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Abstract 

Integer overflow and wraparound are major causes of software vulnerabilities in the C and C++ 

programming languages. In this paper we present the as-if infinitely ranged (AIR) integer model, 

which provides a largely automated mechanism for eliminating integer overflow and integer trun-

cation. The AIR integer model either produces a value equivalent to one that would have been 

obtained using infinitely ranged integers or results in a runtime constraint violation.  Unlike pre-

vious integer models, AIR integers do not require precise traps, and consequently do not break or 

inhibit most existing optimizations. 

 

 

 



 

1 | CMU/SEI-2009-TN-023 

1 Integral Security 

The majority of software vulnerabilities result from coding errors. For example, 64% of the vulne-

rabilities in the National Vulnerability Database in 2004 resulted from programming errors    

[Heffley 04].
1
  The C and C++ languages are particularly prone to coding errors that result in vul-

nerabilities because of the lack of type-safety in these languages [Seacord 2005]. 

In 2007, MITRE reported that buffer overflows remain the number one issue as reported in oper-

ating system (OS) vendor advisories. It also reported that integer overflow, barely in the top 10 

overall in the years preceding the report, was number two for OS vendor advisories [Christey 07].  

Integer values that originate from untrusted sources and are used in any of the following ways can 

easily result in vulnerabilities: 

  as an array index 

  in any pointer arithmetic 

  as a length or size of an object 

  as the bound of an array (for example, a loop counter) 

  as an argument to a memory allocation function 

The following subsections describe specific integer behaviors that are known to result in vulnera-

bilities in real-world applications.   

1.1 Signed Integer Overflow 

Signed integer overflow is undefined behavior in C, allowing implementations to silently wrap 

(the most common behavior), trap, or both.  Because signed integer overflow produces a silent 

wraparound in most existing C and C++ implementations, some programmers assume that this is a 

well-defined behavior.  However, modern compilers may assume during optimization that unde-

fined behaviors cannot occur, and eliminate code that can only execute in the presence of unde-

fined behavior. 

Rule INT32-C in The CERT C Secure Coding Standard requires programmers to “Ensure that 

operations on signed integers do not result in overflow” [Seacord 2008]. 

1.2 Unsigned Integer Wrapping 

Although unsigned integer wrapping is well-defined by the C standard as having modulo beha-

vior, unexpected wrapping has led to numerous software vulnerabilities. The following code 

shows an example of an integer overflow based on a real-world vulnerability in the handling of 

the comment field in JPEG files [Solar Designer 00]. 

 

 
1
 Other broad categories of vulnerabilities include design and configuration errors. 



 

2 | CMU/SEI-2009-TN-023 

void getComment(size_t len, char *src) { 

  size_t size; 

  size = len - 2; 

  char *comment = (char *)malloc(size + 1); 

  memcpy(comment, src, size); 

  return; 

} 

int main(void) { 

  getComment(1, "shellcode"); 

  return 0; 

} 

JPEG files contain a comment field that includes a two-byte length field. The length field indi-

cates the length of the comment, including the length field. To determine the length of the com-

ment string alone (for memory allocation), the function reads the value in the length field and sub-

tracts two. The function then allocates the length of the comment plus one byte for the terminating 

null byte. There is no error check to ensure that the length field is valid, which makes it possible 

to cause an overflow by creating an image with a comment length field containing the value 1. 

The memory allocation call of zero bytes (1 minus 2 [length field] plus 1 [null termination]) suc-

ceeds. (It is implementation-defined behavior whether the calloc(), malloc(), and real-

loc() functions return a null pointer or a pointer to an allocated object when the size requested 

is zero.) The size variable is declared as a size_t (line 2), resulting in a large positive value of 

0xFFFFFFFF (from 1 minus 2).  Subsequently, size + 1 evaluates to zero. 

Another real-world example of vulnerabilities resulting from unsigned integer wrapping occurs in 

memory allocation. Wrapping can occur in calloc() and other memory allocation functions 

when computing the size of a memory region. As a result, a buffer is returned that is smaller than 

the requested size, possibly resulting in a subsequent buffer overflow.
2
 

The following code fragments may lead to wrapping vulnerabilities, where count is an unsigned 

integer: 

C: pointer = calloc(sizeof(element_t), count); 

C++: pointer = new ElementType[count]; 

This secure coding rule is captured by INT30-C, “Ensure that unsigned integer operations do not 

wrap” in the CERT C Secure Coding Standard [Seacord 2008]. 

1.3 Conversion Errors 

The CERT C Secure Coding Standard rule INT31-C requires that integer conversions, both impli-

cit and explicit (using a cast), must be guaranteed not to result in lost or misinterpreted data [Sea-

cord 2008]. 

The only integer type conversions that are guaranteed to be safe for all data values and all possible 

conforming implementations are conversions of an integral value to a wider type of the same   

signedness. Conversion of an integer to a smaller type results in truncation of the high-order bits. 

 
2
 See http://cert.uni-stuttgart.de/advisories/calloc.php 

http://cert.uni-stuttgart.de/advisories/calloc.php


 

3 | CMU/SEI-2009-TN-023 

Consequently, assigning an integer with greater precision to an integer type with lesser precision 

can result in truncation if the resulting value cannot be represented in the smaller type.  

The following code illustrates a truncation vulnerability from the SSH CRC-32 Compensation 

Attack Detector [CVE 2001]. 

int detect_attack(u_char *buf, int len, u_char *IV) { 

  static word16 *h = (word16 *)NULL; 

  static word16 n = HASH_MIN_ENTRIES; 

  word32 l; 

  ... 

  for (l = n; l < HASH_FACTOR(len/BSIZE); l = l << 2); 

  if (h == NULL) { 

    debug("Install crc attack detector."); 

    n = l; 

    h = (word16 *) xmalloc(n * sizeof(word16)); 

  } else 

  for (c = buf, j = 0; c < (buf+len); c += BSIZE, j++){ 

    for (i = HASH(c) & (n ? 1); h[i] != UNUSED; 

      i = (i + 1) & (n ? 1)) ...; 

    h[i] = j; 

  } 

} 

The local variable n is 16-bits long, so the assignment n = l may result in truncation. By send-

ing a large SSH protocol packet an attacker can force this truncation to occur, causing the call to 

xmalloc() to allocate too little space. The code that initializes the allocated space a few lines 

later will corrupt SSH’s memory, leading to an attack.  

1.4  Optimizations that Exploit Undefined Behavior 

Conforming implementations can deal with undefined behavior in a variety of fashions, such as 

ignoring the situation completely, with unpredictable results; translating or executing the program 

in a documented manner characteristic of the environment (with or without the issuance of a diag-

nostic message); or terminating a translation or execution (with the issuance of a diagnostic mes-

sage).  Because compilers are not obligated to generate code for undefined behavior, these beha-

viors are candidates for optimization. By assuming that undefined behaviors will not occur, 

compilers can generate code with better performance characteristics. 

Signed integer overflow is often not considered a problem for hardware which detects it, because 

overflow is undefined behavior and a program is permitted to exhibit any behavior once unde-

fined behavior has occurred.  

For example, this code tests for signed integer overflow by testing if a + 100 > a: 

#include <assert.h> 

 

int foo(int a) { 

  assert(a + 100 > a); 

  printf("%d %d\n", a + 100, a); 
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  return a; 

} 

 

int main(void) { 

  foo(100); 

  foo(INT_MAX); 

} 

This test cannot evaluate to false unless an integer overflow occurs. However, because this code 

depends on undefined behavior, a compiler may eliminate it. For example, GCC version 4.1.1 

optimizes out the assertion for all optimization levels, and GCC 4.2.3 optimizes out the assertion 

for programs compiled with -O2 level optimization and higher. 

If an implementation traps on overflow, the integer overflow will cause the program to terminate 

(before it has an opportunity to perform the test). 

In the following example, derived from the GNU C Library 2.5 implementation of mktime 

(2006-09-09), the code assumes wraparound arithmetic in the addition operation to detect signed 

overflow:  

  time_t t, t1, t2; 

  int sec_requested, sec_adjustment; 

    ... 

  t1 = t + sec_requested; 

  t2 = t1 + sec_adjustment; 

  if (((t1 < t) != (sec_requested < 0)) 

    | ((t2 < t1) != (sec_adjustment < 0))) 

    return -1; 

Although it is often assumed that a C compiler must honor the presence of parentheses, even for 

commutative-associative operators, this is not really true. The compiler can follow the “as if” rule 

and rearrange expressions provided the correct result is computed. It is usually true that the com-

piler is prevented from rearranging floating point expressions, but a compiler can often rearrange 

integral expressions, which may cause an overflow condition.  Historically, this has not been con-

sidered to be a problem.  

All of this puts the onus on the programmer to write strictly conforming code, with or without the 

help of the compiler.    
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2 Alternative Solutions 

This section describes existing and theoretical alternative solutions to the problem of integral se-

curity in C and explains why these solutions inadequately address the issues. 

2.1 The GCC –ftrapv Flag 

GCC provides an -ftrapv compiler option that provides limited support for detecting integer 

overflows at runtime.  The GCC runtime system generates traps for signed overflow on addition, 

subtraction, and multiplication operations for programs compiled with the -ftrapv flag. This is 

accomplished by invoking existing, portable library functions that test an operation’s post-

conditions and call the C library abort() function when results indicate that an integer error has 

occurred [Seacord 2005]. 

The following function from the GCC runtime system is used to detect overflows resulting from 

the addition of signed 16-bit integers.  

Wtype __addvsi3(Wtype a, Wtype b) { 

   const Wtype w = a + b; 

   if (b >= 0 ? w < a : w > a) 

     abort (); 

   return w; 

} 

The two operands are added and the result is compared to the operands to determine whether an 

overflow condition has occurred. For _addvsi3(), if b is non-negative and w < a, an over-

flow has occurred and abort() is called. Similarly, abort() is called if b is negative and  

w > a. 

The GCC –ftrapv flag only works for a limited subset of signed operations and always results 

in an abort()when a runtime overflow is detected.  

The –ftrapv option is known to have substantial problems, and discussions for how to trap 

signed integer overflows in a reliable and maintainable manner are on-going within the GCC 

community. 

2.2 Precondition Testing 

Another approach to eliminating integer exceptional conditions is to test the values of the ope-

rands before an operation to prevent overflow and wraparound from occurring.  This is especially 

important for signed integer overflow, which is undefined behavior and may result in a trap on 

some architectures (for example, a division error on IA-32).  The following code illustrates a 

strictly conforming test to ensure that the ensuing multiplication operation does not result in an 

overflow. 
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   signed int si1, si2, result; 

    

   /* Initialize si1 and si2 */ 

    

   if (si1 > 0){  /* si1 is positive */ 

     if (si2 > 0) {  /* si1 and si2 are positive */ 

       if (si1 > (INT_MAX / si2)) { 

         /* handle error condition */ 

       } 

     } /* end if si1 and si2 are positive */ 

     else { /* si1 positive, si2 non-positive */ 

       if (si2 < (INT_MIN / si1)) { 

           /* handle error condition */ 

       } 

     } /* si1 positive, si2 non-positive */ 

   } /* end if si1 is positive */ 

   else { /* si1 is non-positive */ 

     if (si2 > 0) { /* si1 is non-positive, si2 is positive */ 

       if (si1 < (INT_MIN / si2)) { 

         /* handle error condition */ 

       } 

     } /* end if si1 is non-positive, si2 is positive */ 

     else { /* si1 and si2 are non-positive */ 

       if ( (si1 != 0) && (si2 < (INT_MAX / si1))) { 

         /* handle error condition */ 

       } 

     } /* end if si1 and si2 are non-positive */ 

   } /* end if si1 is non-positive */ 

    

   result = si1 * si2; 

Similar examples of precondition testing are shown in The CERT C Secure Coding Guidelines: 

INT30-C, “Ensure that unsigned integer operations do not wrap”; INT31-C, “Ensure that integer 

conversions do not result in lost or misinterpreted data”; and INT32-C, “Ensure that operations on 

signed integers do not result in overflow.” 

Detecting an overflow in this manner can be relatively expensive, especially if the code is strictly 

conforming.  Frequently, these checks must be in place before suspect system calls that may or 

may not perform similar checks before performing integral operations. Redundant testing by call-

er and by called is a style of defensive programming that has been largely discredited within the C 

and C++ community. The usual discipline in C and C++ is to require validation only on one side 

of each interface.  

Furthermore, branches can be expensive on modern hardware, so programmers and implementers 

work hard to keep branches out of inner loops.  This argues against requiring the application pro-

grammer to pre-test all arithmetic values to prevent an overflow, which rarely happens. Prevent-

ing run-time overflow by program logic is sometimes easy, sometimes complicated, and some-

times extremely difficult. Clearly, some overflow occurrences can be diagnosed in advance by 

static-analysis methods. But no matter how good this analysis is, there are still code sequences 
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that cannot be detected before run time. In most cases, the resulting code is much less efficient 

than what a compiler could generate to recognize that an overflow took place.  

The underlying process of code generation may be immensely complicated, but in general it is 

best to avoid complexity in the code that end-user programmers are required to write.  

2.3 Saturation Semantics 

Verifiably in-range operations are often preferable to treating out-of-range values as an error con-

dition because the handling of these errors has been shown to cause denial-of-service problems in 

actual applications. The quintessential example of this is the failure of the Ariane 5 launcher, 

which occurred because of an improperly handled conversion error that resulted in the processor 

being shut down [Lions 96]. 

A program that detects an imminent integer overflow may either signal an error condition or pro-

duce an integer result that is within the range of representable integers on that system.  Some ap-

plications, particularly in embedded systems, are better handled by producing a verifiably in-

range result because it allows the computation to proceed, thereby avoiding a denial-of-service 

attack. However, when continuing to produce an integer result in the face of overflow, the ques-

tion of what integer result to return to the user must be considered. 

The saturation and modwrap algorithms and the technique of restricted range usage produce in-

teger results that are always within a defined range. This range is between the integer values MIN 

and MAX (inclusive), where MIN and MAX are two representable integers with MIN < MAX. 

For saturation semantics, assume that the mathematical result of the computation is result. The 

value actually returned to the user is set out in the following table: 

Table 1. Saturation semantics 

Range of mathematical result  Result returned  

MAX < result  MAX  

MIN <= result <= MAX  result  

result < MIN  MIN 

In the C standard, signed integer overflow produces undefined behavior, meaning that any beha-

vior is permitted. Consequently, producing a saturated MAX result is permissible.  The implemen-

tation of saturation semantics for unsigned integers would require a change in the standard.  For 

both signed and unsigned integers, there is currently no way of requiring a saturated result. If 

C1X defined a new standard pragma such as _Pragma(STDC SAT), saturation semantics could 

be provided without impacting existing code.  

Although saturation semantics may be suitable for some applications, it is not always appropriate 

in security critical code where abnormal integer values may be an indication of an attack. 
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2.4 Overflow Detection 

C99 provides the <fenv.h> header to support the floating-point exception status flags and di-

rected-rounding control modes required by IEC 60559, and other similar floating-point state in-

formation.  This includes the ability to determine which floating-point exception flags are set. 

It is ironic that floating-point has a set of fully developed methods for monitoring and reporting 

exceptional conditions, even though the population using those methods is orders of magnitude 

smaller than the population that needs correctly represented integers. On the other hand, perhaps 

C's long gestation period for addressing the correct-representation problem will lead to a system 

which is superior to the other languages that tackled the problem decades ago (such as Pascal and 

Ada). 

A potential solution to handling integer exceptions in C is to provide an inquiry function (just as C 

provides for floating point) that interrogates status flags that are being maintained by the (compi-

ler-specific) assembler code that performs the various integer operations. If the inquiry function is 

called after an integral operation and returns a “no overflow” status, then the value is reliably cor-

rectly represented.  

At the level of assembler code, the cost of detecting overflow is zero or nearly zero. Many archi-

tectures do not even have an instruction for “add two numbers but do NOT set the overflow or 

carry bit”;  the detection occurs for free whether it is desired or not. But it is only the specific 

compiler code generator that knows what to do with those status flags.  

These inquiry functions may be defined, for example, by translating the <fenv.h> header into 

an equivalent <ienv.h> header that provides access to the integer exception environment. This 

header would support the integer exception status flags, and other similar integer exception state 

information.  

However, anything that can be performed by an <ienv.h> interface could be better performed 

by the compiler.  For example, the compiler may choose a single, cumulative integer exception 

flag in some cases, and one flag per variable in others, depending on what is most efficient in 

terms of speed and storage for the particular expressions involved.   Additionally, the concept of a 

runtime constraint handler did not exist until the publication of TR 24731-1 [ISO/IEC TR 24731-

1:2007], so the C standards committee defined an interface that put the entire burden on the pro-

grammer.   

Floating-point code is different from integer code in that it includes concepts such as rounding 

mode, which need not be considered for integers. Additionally, floating point has a specific value, 

NaN (Not a Number), which indicates that an unrepresentable value was generated by an expres-

sion.  Sometimes floating-point programmers want to terminate a computation when a NaN is 

generated; at other times they want to print out the NaN because its existence conveys valuable 

information (and there might be one NaN in the middle of an array being printed out, with the rest 

of the values being valid results).  Because of the combination of NaNs and the lack of runtime 

constraint handlers, the programmer needed to be given more control. 



 

9 | CMU/SEI-2009-TN-023 

In general, there is no NaI (Not an Integer) value, so there is no requirement to preserve such a 

value to allow it to be printed out.  Therefore, the programmer does not need fine control over 

whether or not an integer runtime constraint handler gets called after each operation.  Without this 

requirement, it is preferable to keep the code simple and let the compiler do the work, which it 

can generally do more reliably and efficiently than individual application programmers. 

2.5 Branch Insertion 

Branch insertion is a proof of concept modification to the GCC Compiler, developed by CERT, 

which automatically invokes a runtime constraint handler when an integer operation fails to pro-

duce a correctly represented value.   

An x86 processor has two flags that deal with integer overflow, a carry flag, which is set when the 

most significant bit changes from a 1 to a 0, and  an overflow flag, which is set when the most 

significant bit changes from a 0 to a 1. On x86 processors, the simplest way to detect integer over-

flow is with instructions that branch conditionally on the status of the carry and overflow flags as 

follows: 

   // arithmetic 

   jn[co] .LANALYZEXXX 

   call overflow_handler 

.LANALYZEXXX 

   // code after arithmetic 

Because signedness information is required to determine which of the overflow or carry flags to 

branch on, and because GCC’s GIMPLE representation is the final representation which retains 

signedness information, GCC’s GIMPLE translation stage was modified to insert additional as-

sembly code after arithmetic operations.  This was accomplished by inserting an additional 

GIMPLE_ASM statement following any GIMPLE_ASSIGN statement which involved a computa-

tion that could potentially overflow such as PLUS_EXPR, MINUS_EXPR, MULT_EXPR, 

NEGATE_EXPR, and LSHIFT_EXPR.   

The performance of branch insertion was assessed using the SPECINT2006 benchmarks, com-

posed of several open source programs.  SPECINT2006 was compiled using a reference (unmodi-

fied) GCC compiler and a GCC compiler modified to implement branch insertion.  The two bina-

ries were then run, and the ratio of their runtime to a known baseline was used to compute a 

performance ratio.  

The higher numbers in Table 2 indicate better performance. 

Table 2. SPECINT2006 macro-benchmark runs 

Optimization Level Control  Ratio Analyzable Ratio % Slowdown 

-O0 4.93 4.67 5.5% 

-O1 7.13 6.30 13% 

-O2 7.45 6.59 13% 
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As expected, for non-optimized code, the effective slowdown was on the order of around 5%. 

This represents the best case performance due entirely to the addition of jump statements follow-

ing arithmetic operations.   

The slowdown in optimized code (-O1 and –O2) occurs because GCC only performs optimiza-

tions on basic blocks.  However, if a branch is inserted into the code sequence then it splits the 

code so that there are now more and smaller basic blocks.  This leaves less room for local optimi-

zations (intra-basic-block) to do their job, and makes more work for global optimizations (inter-

basic-block) as well as making functions appear larger (more basic blocks) to inter-procedural 

optimizations such as inlining, perhaps inhibiting some inlining that was done before.  

Because the overflow branch should never be taken except in cases involving unexpected beha-

vior, the branch predictor can remember whether or not the jump was taken, and thereby make a 

correct prediction in all subsequent encounters.  Because, in the worst case, the branch predictor 

will mispredict once per jump, and the number of jumps is fixed at compile time, the number of 

mispredicted jumps is constant.   

2.6 Runtime Integer Checking (RICH) 

Brumley et al. have developed a static program transformation tool, called RICH, that takes as 

input any C program and outputs object code that monitors its own execution to detect integer 

overflows and other bugs [Brumley 2007]. Despite the ubiquity of integer operations, the runtime 

performance penalty of RICH is low, averaging less than 5%. RICH implements the checks in two 

phases. At compile time, RICH instruments the target program with run-time checks of all unsafe 

integer operations. At run time, the inserted instrumentation checks each integer operation. When 

a check detects an integer error, it generates a warning and optionally terminates the program. 

2.7 Clang Implementation  

David Chisnall implemented the AIR integer model for Clang using the LLVM overflow-checked  

operations.
3
 The current implementation checks the integer overflow flag after each  +, - or * in-

teger operation and, in the case of an overflow, calls a handler function such as: 

extern long long (*__overflow_handler)( 

  long long a, long long b, char op, char  width 

); 

The operation arguments are promoted to the long long type via sign extension, the op indi-

cates whether it was signed/unsigned addition, subtraction or multiplication, and the width indi-

cates the expected width of the result.  GCC's -ftrapv can be replicated by having it uncondi-

tionally call abort(). Alternatively, overflow can be handled by calling a registered handler 

function from a stack, or by promoting it to some kind of boxed value.  If this function returns, its 

return value is truncated and used in place of the result of the operation. 

The Clang implementation simply checks the flag immediately after any signed integer operation 

and jumps to a handler function if overflow occurred.  Conditional jumps on overflow are cheap 

 
3
 http://article.gmane.org/gmane.comp.compilers.clang.devel/4469 

http://article.gmane.org/gmane.comp.compilers.clang.devel/4469
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because the branch predictor will almost always guess correctly.  By allowing a custom handler 

function, rather than abort, Clang allows for calling longjmp() or some unwind library func-

tions in cases where overflow occurred.  This works well with the optimizer, which can eliminate 

the test for cases where the value can be proven to be in-range.   

2.8 GCC no-undefined-overflow 

Richard Guenther has proposed a new no-undefined-overflow branch for GCC the goal of which 

is to make overflow behavior explicit per operation and to eliminate all constructs in the GIMPLE 

intermediate language (IL) that invoke undefined behavior [Guenther 2009]. To support languag-

es, such as C and C++, that have undefined semantics on overflowing operations, the middle-end 

gets new unary and binary operators that implicitly encode value-range information about their 

operands noting that the operation does not overflow.  These does-not-overflow operators trans-

form the undefined behavior into a valid assumption making the GIMPLE IL fully defined. Con-

sequently, the front-end and value-range analysis must determine if operations overflow and gen-

erate the appropriate IL. 

 

Instructions such as NEGATE_EXPR, PLUS_EXPR, MINUS_EXPR, MULT_EXPR and 

POINTER_PLUS_EXPR would have wrapping, no-overflow, and trapping variants. 

The trapping variants are indicated by a V for overflow (for example, PLUSV_EXPR is the trap-

ping variant for PLUS_EXPR) and by NV for no overflow (for example, PLUSNV_EXPR). The 

no-overflow variant also wraps if it overflows so that existing code continues to function.    

The GCC no-undefined-overflow branch, when implemented, should greatly facilitate the imple-

mentation of the AIR integer model within GCC. 
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3 As-if Infinitely Ranged (AIR) Integers 

The purpose of the AIR integer model is to either a) produce a value which is equivalent to a val-

ue that would have been obtained using infinitely ranged integers, or b) result in a runtime con-

straint violation.  This model is generally applied to both signed and unsigned integers, although 

either may be enabled or disabled for entire compilation units using compiler options or locally 

using attributes.  Implementations must declare they are implementing analyzability with a prede-

fine, for example, __STDC_ANALYZABLE__.    In our prototype, the AIR integer model is 

enabled using the GCC –fanalyzable compile time option, although the exact mechanism 

used is implementation defined.  In analyzable mode, fetching an integer trap representation 

should not execute a trap. This should already be true on most or all existing platforms.  Optimi-

zations are encouraged provided that overflow is set properly.  

The AIR integer model distinguishes between undefined behavior specified by the standard, a 

compiler defect, or a hardware defect. The C standards committee has always assumed that, ex-

cluding floating point, it is possible to write portable (strictly conforming) C, which requires 

knowledge of specific restrictions.  

In the AIR integer model, when an observation point is reached, if overflow traps have not been 

disabled, and if no traps have been raised, then any integer value in the output is correctly 

represented (“as if infinitely ranged”).  These traps are implemented using either the existing 

hardware traps (such as divide-by-zero) or by invoking a runtime-constraint handler.  The same 

solution is applied to unsigned integer wrapping.  Whether a program traps for given inputs de-

pends on the exact optimizations carried out by a particular compiler version.  If required, a pro-

grammer can implement a custom runtime-constraint handler to set a flag and continue (using the 

indeterminate value that was produced).  In the future, an implementation that also supports C++ 

might throw an exception rather than invoke a runtime-constraint handler; or alternatively, the 

runtime-constraint handler can throw an exception. We have not attempted to evaluate these, or 

other, alternatives for C++. 

An observation point occurs at an output, including volatile object accesses, or at a pointer derefe-

rence that would cause undefined behavior, or at a call to a library routine using arguments that 

would cause undefined behavior. 

AIR Integers do not require Ada-style precise traps, which require that an exception is raised 

every time there is an integer overflow.  In the AIR integer model, it is acceptable to delay catch-

ing an incorrectly represented value until an observation point is reached just before it either af-

fects the output or causes a critical undefined behavior [Plum 09].  This model improves the abili-

ty of compilers to optimize, without sacrificing safety and security. 

Critical undefined behavior is a means of differentiating between behaviors for which, upon use 

of a nonportable or erroneous program construct or of erroneous data, the C standard imposes no 

requirements.  The behavior might, for example, perform an out-of-bounds store or a trap. 
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By contrast, bounded undefined behavior is behavior for which, upon use of a nonportable or er-

roneous program construct, or of erroneous data, no requirement is imposed except that the beha-

vior cannot perform an out-of-bounds store, and that all values produced or stored are indetermi-

nate values. The behavior might, for example, perform a trap.  

In the analyzable model for AIR Integers, all undefined behaviors defined in clauses 1 through 7 

of the C99 standard are (in this AIR integer model) restricted to the semantics of bounded unde-

fined behavior, except for the critical undefined behaviors shown in Table 3. 

Table 3. Critical undefined behavior 

C99 Section Proposed Critical Undefined Behavior 

6.2.4     An object is referred to outside of its lifetime    

6.3.2.1    An lvalue does not designate an object when evaluated    

6.3.2.3 A pointer is used to call a function whose type is not compatible with the pointed-to type 

6.5.3.2    The operand of the unary * operator has an invalid value    

6.5.6    Addition or subtraction of a pointer into, or just beyond, an array object and an integer type produc-

es a result that points just beyond the array object and is used as the operand of a unary * operator 

that is evaluated    

7.1.4 An invalid argument to a function can cause an invalid address computation and/or invalid access 

7.20.3    The value of a pointer that refers to space deallocated by a call to the free or realloc function is 

used  

7.21.1, 7.24.4   A string or wide string utility function is instructed to access an array beyond the end of an object 

All a programmer needs to do is specify which runtime-constraint handlers should be called and 

let the compiler do the rest.  This makes programming much simpler, easier to read, and easier to 

maintain, which improves security. 

3.1 Implementation Methods 

AIR permits a wide range of implementation methods, some of which might apply to different 

environments and implementations: 

  Overflow can set a flag which compiler-generated code will test later. 

  Overflow can immediately invoke a runtime-constraint handler. 

  The testing of flags can be performed at an early point (such as within the same full-

expression), or delayed (subject to some restrictions). 

For example, in the following code: 

  i = 32767 + 1; 

  j = i * 3; 

  if (m < 0) 

    a[i] = . . .; 

the variable j does not need to be checked within this code fragment (but may need to be checked 

later), and i does not need to be checked unless and until the a[i] expression is evaluated, but 

must be checked by then. 
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Compilers may choose a single, cumulative integer exception flag in some cases, and one flag per 

variable in others, depending on what is most efficient in terms of speed and storage for the par-

ticular expressions involved.  For example, in the following code: 

  x++; 

  y++; 

  z++; 

  printf("%d", x); 

the call to printf() is an observation point for the variable x. Any of the operations x++, y++, 

or z++ can result in an overflow.   Consequently, it is necessary to test the value of this overflow 

flag prior to the observation point (the call to printf()) and invoke the runtime-constraint 

handler if the overflow flag is set:  

  /* compiler clears integer exception flags here */ 

 

  x++; 

  y++; 

  z++; 

   

  if (/* integer exception flags are set */)  

    runtime_constraint_handler(); 

  printf("%d", x); 

If only a single overflow flag is used, then one or more of these lvalues contains an incorrectly 

represented value, but we don't know which one.  Consequently, the runtime-constraint handler 

will be invoked if any of the increment operations resulted in an overflow.  In this case, it may be 

preferable for the compiler to generate a separate overflow flag for x so that the runtime-

constraint handler need only be invoked if x++ overflows. 

Portably, a programmer can only assume, if the code reaches an observation point without invok-

ing a runtime-constraint handler, that all the integer values are correctly represented.  If a runtime 

constraint error occurs, all integer values that have been modified since the last observation point 

contain indeterminate values.  In cases where the programmer wants to rerun the calculation using 

a higher or arbitrary-precision integer, the programmer would need to recalculate the values for all 

indeterminate values. 

Ideally, while we would like to eliminate implementation-defined behavior in the AIR integer 

model, it is necessary to provide sufficient latitude for compiler implementers to perform certain 

optimizations. 

3.2 Undefined Behavior 

One of the goals of the AIR integer model is to eliminate previously undefined behaviors by pro-

viding definitions.  The goal is to define optional predictable semantics for areas of C that are pre-

sently undefined.  Various cases of undefined behavior in the standard could effectively be as-

signed such optional predictable semantics (at some optimization cost), while some changes from 

the present unbounded undefined behavior pose serious implementation problems in practice.  
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3.2.1 Division by 0, modulo 0 (signed or unsigned) 

There is no defined infinite-precision result for division by zero.  Processors typically trap, but 

this may not be universal.  The AIR integer model requires trapping.   

3.2.2 INT_MIN / -1 

Processors commonly trap, but this may not be universal.  For example, when using the IA-32 

idiv instruction, dividing INT_MIN by -1 results in a division error and generates an interrupt 

on vector 0 because the signed result (quotient) is too large for the destination [Intel 2004].  The 

AIR integer model requires trapping. 

3.2.3 INT_MIN % -1 

The ISO/IEC JTC1/SC22/WG14 C standards committee discussed the behavior of  

INT_MIN % -1 on the WG14 reflector and at the April 2009 Markham meeting [Hedquist 

2009].  The committee agreed that, mathematically, INT_MIN % -1 equals 0.  However, in-

stead of producing the mathematically correct result, some architectures may trap.  For example, 

implementations targeting the IA-32 architecture use the idiv instruction to determine the re-

mainder.  Consequently, INT_MIN % -1 results in a division error and generates an interrupt on 

vector 0.     

At Markham, some committee members argued that C99 requires a C program computing 

INT_MIN % -1 to produce 0, because 0 is representable while others argued that C99 left the 

computation as undefined because INT_MIN / -1 is not representable.  The committee decided 

that requiring C programs to produce 0 would render some compilers noncompliant with the stan-

dard, and that adding this corner case could add a significant overhead.  Consequently, the C1X 

draft is being amended to explicitly state that if a/b is not representable, a%b is undefined.  

The AIR integer model requires that a % -1 equals 0 for all values of a, or alternatively, trap-

ping is performed. 

3.2.4 Shifts  

Shifting by a negative number of bits or by more bits than exist in the operand is undefined beha-

vior in C99 and, in almost every case, indicates a bug (logic error).  Signed left shifts of negative 

values or where the result of the operation is not representable in the type are undefined in C99 

and implementation-defined in C90.  GCC has no options to handle shifts by negative amounts or 

by amounts outside the width of the type predictably or trap on them; they are always treated as 

undefined.  Processors may reduce the shift amount modulo some quantity larger than the width 

of the type.  For example, 32-bit shifts are implemented using the following instructions on IA-32: 

sa[rl]l   %cl, %eax 

The sa[rl]l instructions take a bit mask of the least significant 5 bits from %cl to produce a 

value in the range [0, 31] and then shift %eax that many bits. 
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64-bit shifts become 

sh[rl]dl  %eax, %edx 

sa[rl]l   %cl, %eax 

where %eax stores the least significant bits in the double word to be shifted and %edx stores the 

most significant bits.  

In the AIR integer model, shifts by negative amounts or amounts outside the width of the type 

trap because the results are not representable without overflow.  This is consistent with The CERT 

C Secure Coding Standard Rule INT34-C, “Do not shift a negative number of bits or more bits 

than exist in the operand.” 

Signed left shifts of negative values, or where the result of the operation is not representable in the 

type, are undefined in C99 and implementation-defined in C90. In the AIR integer model, signed 

left shifts on negative values must not trap if the result is representable without overflow.  If the 

value is not representable in the type, the implementation must trap.  For example, a << b == 

a * 2 ^ b if b >= 0 and a * 2 ^ b is representable without overflow in the type.  For 

right shift, a >> b == a / 2 ^ b if b >= 0, and 2 ^ b is representable without overflow 

in the type.   

Unsigned left shifts never trap under the AIR integer model.  This is because unsigned left shifts 

are generally perceived by programmers as loosing data, and there is a large amount of existing 

code that assumes modulo behavior.  For example, in the following code from JasPer Version 

1.900.1  tmpval  is having  uint_fast32_t type: 

while (--n >= 0) { 

  c = (tmpval >> 24) & 0xff; 

  if (jas_stream_putc(out, c) == EOF) { 

    return -1; 

  } 

  tmpval = (tmpval << 8) & 0xffffffff; 

} 

The modulo behavior of tmpval is assumed in the left shift operation. 

3.2.5 Enabling and Disabling Unsigned Integer Wrapping 

The default behavior under the AIR integer model is to trap unsigned integer wrapping. 

Unsigned integer semantics are problematic because unsigned integer wrapping poses a signifi-

cant security risk but is well-defined by the C standard. Also, in legacy code, the wrapping beha-

vior can be critical to correct behavior. Consequently, it is necessary to provide mechanisms to 

enable and disable wrapping for unsigned integers.    

Unsigned integer wrapping can be enabled or disabled per compilation unit or for individual va-

riables.   

Compiler options can be provided to enable or disable wrapping for all unsigned integer variables 

per compilation unit. Existing code that depends on modulo behavior for unsigned integers should 

be isolated in a separate compilation unit and compiled wrapping disabled. 
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When an unsigned integer defined in one compilation unit compiled with wrapping semantics is 

combined with another unsigned integer defined in a separate compilation unit with trapping se-

mantics, the resulting value has the default behavior of the compilation unit in which the opera-

tion occurs. 

New identifiers, such as __wrap and __trap, can be used as named attributes to enable or dis-

able wrapping for individual integer variables, both signed and unsigned.   These can be imple-

mented as variable attributes in GCC or using __declspec or a similar mechanism in Microsoft 

Visual Studio until a standard attribute mechanism is specified by the C standards committee. 

Enabling or disabling wrapping and trapping per variable has implications for the type system 

(what happens when you combine a wrapping variable with a trapping variable?) and for type 

safety (what happens when you pass a trapping variable as an argument to a function that accepts 

a wrapping parameter?).  Because of these added complications, we recommend only allowing 

unsigned integer to be enabled or disabled per compilation unit. 

Because of the sheer number of unsigned integer bugs seen by the security community, we strong-

ly recommend that the trap behavior should be the default for all new code, and for as much lega-

cy code as possible, consistent with adequate testing and code-review. 

3.2.6 Integer Promotions and the Usual Arithmetic Conversions 

In cases where a compilation unit is compiled with wrapping disabled for unsigned integers, it is 

possible that operations can take place between signed integers with trapping semantics and un-

signed integers with wrapping semantics.  In these cases, the semantics of the resulting variable 

(trapping or wrapping) depends on the integer promotions and the usual arithmetic conversions 

defined by C99.  In cases where the resulting variable is a signed integer type, trapping semantics 

apply; in cases where the resulting value is an unsigned integer type, wrapping semantics are 

used. 

3.2.7 Integer Constants 

Expressions involving integer constants have the same semantics as similar expressions involving 

integer variables.   The current C standard allows integer expressions to be reordered.  For each of 

these expressions, there are a fixed number of possible orderings.  For constant expressions, it is 

the compiler’s responsibility to try all of the orderings.  If one or more of these reordering eva-

luates the constant without overflowing, the implementation must not overflow in the calculation 

of the constant. 

As implied by the name “as-if infinitely ranged,” signed integer constant expressions are permit-

ted to be evaluated as one of the greatest-width integer types, either intmax_t or uintmax_t, 

so overflow might not happen during the calculation of a constant; however, once the value is to 

be used or stored, that value must be within the correct range for its type. 

We propose a more restricted model for trapping unsigned behavior where:  

((unsigned)0 - 1) 
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produces a constraint error violation and should result in a fatal diagnostic if compiled. 

Integer constants (literals) have the types as defined by C99 Section 6.4.4.1, “Integer constants.”  

Signed integer constants under the AIR integer model are trapping.  Under the default behavior of 

the model, unsigned integers constants are also trapping, unless explicitly disabled.  For example, 

in the following expression all integer constants are of type int: 

2 - 3 + 5 

The compiler is required to try all orderings to find one that does not overflow.  A valid ordering 

is: 

2 + 5 - 3 

The result is 3 (and not a constraint violation). 

3.2.8 Expressions Involving Integer Variables and Constants 

Because of macro expansion, another common case in C programs are expressions that include 

some number of variables and some number of constant values such as 

V1 + C1 + V2 + C2 

In this case, the compiler can reorder the expressions and reduce to a single constant value.  How-

ever, the more restricted model for trapping unsigned behavior does not apply in this case.  

For example, although the expression 1u - 2u is a constraint violation if compiled with un-

signed integer trapping, the following expression: 

V1 + 1u + V2 - 2u;   

can be reordered to 

V1 + V2 + 1u - 2u 

and consequently simplified to 

V1 + V2 - 1u  

Regardless of whether it is compiled with trapping enabled or disabled for unsigned integer val-

ues.   

3.2.9 Runtime-constraint Handling 

Most functions defined by ISO/IEC TR 24731-1-20074 include as part of their specification a list 

of runtime constraints, violations of which can be consistently handled at runtime [ISO/IEC TR 

24731-1:2007].  Library implementations must verify that the runtime constraints for a function 

are not violated by the program. If a runtime constraint is violated, the runtime constraint handler 

currently registered with set_constraint_handler_s() is called. 

Implementations are free to detect any case of undefined behavior and treat it as a runtime-

constraint violation by calling the runtime-constraint handler.  This license comes directly from 



 

19 | CMU/SEI-2009-TN-023 

the definition of undefined behavior.   Consequently, the AIR implementation uses the runtime-

constraint mechanisms defined by ISO/IEC TR 24731-1-2007 for handling integer exceptional 

conditions. 

Constraint handlers are defined to be of type constraint_handler_t. It has the following 

definition: 

typedef void (*constraint_handler_t)( 

  const char * restrict msg, 

  void * restrict ptr, 

  errno_t error 

); 

When the handler is called, it is passed the following arguments in the following order: 

1. A pointer to a character string describing the runtime constraint violation. 

2. A null pointer or a pointer to an implementation-defined object. 

3. If the function calling the handler has a return type declared as errno_t, the return value of 

the function is passed. Otherwise, a positive value of type errno_t is passed. 

The runtime constraint handler might not return.  

3.3 Array Dereferences 

An integer overflow during an array dereference constitutes an array out-of-bounds condition and 

is handled by the safe secure C/C++ (SSCC) methods in the analyzable model [Plum 05].   

3.4 The rsize_t Type 

The rsize_t type, defined as part of bounds-checked library functions [ISO/IEC TR 24731-

1:2007], can be used in a complimentary fashion to AIR integers and is consequently subsumed as 

part of the overall solution.  Functions that accept parameters of type rsize_t diagnose a con-

straint violation if the values of those parameters are greater than RSIZE_MAX. Extremely large 

object sizes are frequently a sign that an object's size was calculated incorrectly. For example, 

negative numbers appear as very large positive numbers when converted to an unsigned type like 

size_t. For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect 

errors. For machines with large address spaces, ISO/IEC TR 24731-1 recommends that 

RSIZE_MAX be defined as the smaller of the size of the largest object supported or (SIZE_MAX 

>> 1), even if this limit is smaller than the size of some legitimate, but very large, objects.  The 

CERT C Secure Coding Standard [Seacord 2008] recommends using rsize_t or size_t for all in-

teger values representing the size of an object (INT01-C). 

3.5 Fussy Overflows 

One problem with trapping is fussy overflows, which are overflows in intermediate computations 

that do not affect the resulting value.  For example, on two’s complement architectures, the fol-

lowing code 
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int x = /* nondeterministic value */; 

x = x + 100 – 1000;  

overflows for values of x > INT_MAX - 100, but underflow during the subsequent subtrac-

tion resulting in a correct as-if infinitely ranged integer value.   

In this case, it is likely that most compilers will perform constant folding to simplify the above 

expression to x – 900, eliminating the possibility of a fussy overflow.  However, there are situ-

ations where this will not be possible, for example: 

int x = /* nondeterministic value */; 

int y = /* nondeterministic value */; 

x = x + 100 – y;  

Because this expression cannot be optimized, a fussy overflow may result in a trap, and a poten-

tially successful operation converted into an error condition. 

3.6 Optimizations 

An important consideration in adopting a new integer model is the effect on compiler optimiza-

tion and vice versa. C language experts are accustomed to evaluating the CPU cost of various 

proposals. The usual comparison for the classic standards-conforming mode is to compare the 

CPU cost of solving the problem in the compiler versus the (zero) cost of not doing so. We submit 

that, for the analyzable mode, the proper comparison is to compare the CPU cost of analyzable 

generated code versus the CPU cost of the programmer's extra program logic added to the intrin-

sic CPU cost of the optimized construct. This comparison justifies putting a greater burden on the 

compiler when compiling otherwise insecure constructs in analyzable mode.  

Regardless, performance is always an issue when evaluating new models and it is important to 

preserve existing optimizations while discovering new ones.  Consequently, the AIR integer mod-

el does not prohibit any optimizations that are permitted by the C standard, but does require a di-

agnostic any time that the compiler performs an optimization based on a) signed integer overflow 

wrapping, b) unsigned integer wrapping, c) signed integer overflow cannot occur although value-

range analysis cannot guarantee it will not, or d) unsigned integer wrapping cannot occur although 

value-range analysis cannot guarantee it will not. 

For example, AIR integers allow optimizations based on algebraic simplification without a diag-

nostic:  

    (signed) (a * 10) / 10   

This can be optimized to a.  There is no need to preserve the possibly of trapping a * 10. 

The expression 

    (a - 10) + (b - 10)  

can be optimized to (a + b) - 20 
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While there is a possibility that (a + b) will produce a trap, there is also a possibility that either 

(a - 10) or (b - 10) would result in a trap in the original expression. So long as the appli-

cation can be sure that each output is correctly represented, there is little interest in knowing 

whether a trap might have occurred by a different strategy. 

Optimizations that assume integer overflow does not trap require a diagnostic because this as-

sumption is inconsistent with the integer model. For example, certain optimizations operate on the 

basis that a loop must terminate by exactly reaching the limit n, and therefore the number of itera-

tions can be determined by an exact division with no remainder (EXACT_DIV_EXPR in GCC 

terms) such as 

  for (i = 0; i != n; i += 3) 

This loop can be optimized to iterate for some number of terms determined by a code sequence 

that is only valid for exact division and not if n/3 leaves a remainder.  This loop should also be 

diagnosed because it violates MSC21-C, “Use inequality to terminate a loop whose counter 

changes by more than one,” in the CERT C Secure Coding Standard [CERT 2009a]. 

Diagnostics are also required for optimizations on pointer arithmetic that assume wrapping cannot 

occur. 

3.7 GCC Prototype  

A proof of concept modification to GCC compiler version 4.5.0 has been developed by the CERT 

Secure Coding Initiative that automatically invokes a runtime constraint handler when an integral 

operation fails to produce a correctly represented value. 

To diagnose integer overflow properly on an x86 processor, it is necessary to know whether the 

arguments are signed or unsigned, so that the appropriate flag (carry or overflow) can be checked. 

The overflow flag indicates overflow has occurred for signed operations while the carry flag can 

be safely ignored.  For unsigned computations, the opposite is true. Unfortunately, GCC’s last 

internal representation, the register transfer language (RTL), has no way of storing the signedness 

of arguments to operations. 

This requires inserting a flag into the RTL data structure, the rtx, which carries signedness in-

formation to the GCC backend where translation to assembly code is performed. Upon translation, 

the proper signedness information is available to produce the correct RTL pattern. 

Conditional jumps are added to RTL patterns containing arithmetic operations to invoke a runtime 

constraint handler in the event that signed overflow or unsigned wrapping occurred, as shown in 

the following example: 

   // arithmetic 

jn[co] .LANALYZEXXX  

   call constraint_handler 

    

.LANALYZEXXX 

   // code after arithmetic 
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Overflow checks were not added following signed division because these operations result in a 

division error on IA-32 and generate an interrupt on vector 0.   

The performance of the prototype was assessed using the industry standard SPECCPU2006 

benchmarks, which provide a meaningful and unbiased metric. Because the goal of this project is 

analyzable integer behavior, only the SPECINT2006 portion of the benchmark was run. 

Because the benchmarks used in SPECINT2006 are not designed for analyzable code, the proto-

type was slightly modified so that the analysis is performed, but programs do not abort in the case 

of an overflow. The new snippet has a nop instruction instead of a call to a runtime constraint 

handler: 

   jn[co] .LANALYZEXXX 

   nop 

.LANALYZEXXX 

The prototype was slightly modified so that calls to constraint handlers were replaced by nop 

instructions. This modification prevents runtime constraint handlers from being invoked in the 

case of overflow and wrapping behavior in the benchmarks.  

As explained in Section 2.5, the higher numbers in Table 4 indicate better performance. 

Table 4. SPECINT2006 macro-benchmark runs 

Optimization Level Control  Ratio Analyzable Ratio % Slowdown 

-O0 4.92 4.60 6.96 

-O1 7.21  6.77 6.50 

-O2 7.38 6.99 5.58 

Code insertions occur after all optimizations are performed by GCC, so the observed slowdown is 

not caused by disrupted optimizations. Instead, the slowdown is entirely due to the cost of the 

conditional tests after each arithmetic operation. 

Runtime performance could be further improved by eliminating unnecessary tests in cases where 

value-range analysis can prove that overflow or wrapping is not possible. 

3.8 Experimental Results 

The effectiveness of the GCC prototype was evaluated by compiling the JasPer software (jasper-

1.900.1) and running the resulting executable with some actual data.  Fuzz testing is planned but 

has yet to be performed.   

JasPer includes a software-based implementation of the codec specified in the JPEG-2000 Part-1 

standard ISO/IEC 15444-1 and is written in the C programming language. The JasPer software 

has been included in the JPEG-2000 Part-5 standard ISO/IEC 15444-5, as an official reference 

implementation of the JPEG-2000 Part-1 codec. This software has also been incorporated into 

numerous other software projects (some commercial and some non-commercial). Some projects 

known to use JasPer include 
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 K Desktop Environment (as of version 3.2)  

 Kopete  

 Ghostscript  

 ImageMagick  

 Netpbm (as of Release 10.12)  

 Checkmark  

Because this library has been included in many commercial and non-commercial applications that 

have been widely deployed and used, any vulnerabilities in this library are quite severe because 

they can lead to wide spread compromises. 

Our initial assessment of JasPer using GCC discovered one potential vulnerability and two false 

positives.  The vulnerability involved wrapping of an unsigned integer value.  Further details will 

be published pending completion of a responsible vulnerability disclosure process. 

The two false positives both involved signed left shift.  The first false positive occurs in 

src/libjasper/bmp/bmp_dec.c:443 in function bmp_getint32() 

static int bmp_getint32(jas_stream_t *in, int_fast32_t *val) { 

  int n; 

  uint_fast32_t v; 

  int c; 

  for (n = 4, v = 0;;) { 

    if ((c = jas_stream_getc(in)) == EOF) { 

      return -1; 

    } 

    v |= (c << 24); 

    if (--n <= 0) { 

      break; 

    } 

    v >>= 8; 

  } 

  if (val) { 

    *val = v; 

  } 

  return 0; 

} 

The jas_stream_getc() function has similar semantics to getc(), meaning it returns 

EOF or an unsigned char cast to an int. Consequently, the left shift 24 of c is safe pro-

vided that the platform is non-trapping, although it causes a signed overflow and undefined beha-

vior. 

The false positive can be eliminated by casting c to an unsigned integer type as follows: 

    v |= ((unsigned int)c << 24); 

While this is a false positive for a vulnerability, it is undefined behavior and is also a violation of 

“INT13-C. Use bitwise operators only on unsigned operands” in the CERT C Secure Coding 

Standard [Seacord 2008]. 

http://www.kde.org/
http://kopete.kde.org/
http://www.ghostscript.com/
http://www.imagemagick.org/
http://sourceforge.net/projects/netpbm/
http://watermarking.unige.ch/Checkmark/
https://www.securecoding.cert.org/confluence/display/seccode/INT13-C.+Use+bitwise+operators+only+on+unsigned+operands
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The second false positive is similar: 

static int ras_putint(jas_stream_t *out, int val) { 

  int x; 

  int i; 

  int c; 

 

  x = val; 

  for (i = 0; i < 4; i++) { 

    c = (x >> 24) & 0xff; 

    if (jas_stream_putc(out, c) == EOF) { 

      return -1; 

    } 

    x <<= 8; 

  } 

  return 0; 

} 

The problem here is also the left shift of a signed integer, which can be eliminated by casting the 

signed integer to a compatible unsigned integer type. 
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Summary and Conclusions 

Previous attempts to trap overflows created runtime overhead and hampered optimization.  How-

ever, there is considerable latitude for optimization within the C and C++ standards that has not 

been exploited.  

The AIR integer model guarantees correctly represented integers or trapping, at minimum over-

head.  Further work is planned to evaluate the security of applications with and without the use of 

AIR integers. 

We understand that a fully complete implementation should be portable to non-x86 architectures 

as well as language independent.    

The current implementation is easily extensible to achieve these goals on architectures which sup-

port overflow checks based on signedness. The RTL representation is both architecture and lan-

guage independent, so no changes would be needed before or during the generation of the RTL 

representation. However, to take advantage of the signedness information present in the RTL re-

presentation, each targeted architecture would need to have its own patterns modified. 

It is likely that such an extension would represent a significant undertaking for those involved, as 

the history of GCC has a led to a very large and complicated code base.  We also hope that similar 

functionality could be implemented in other leading C compilers, including LLVM/Clang, the 

Intel C/C++ Compiler, and Microsoft Visual C++. 

We also hope that in the future, integer truncation errors can be analyzed and caught efficiently.  

However, because on most architectures truncation can be analyzed in software, for the time be-

ing, we expect programmers to manually assert the safety of their type conversion and truncation 

operations. 
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